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We propose a self-consistent method for studying equilibrium and kinetics of a 
random copolymer model with a Gaussian distribution of quenched disorder 
characterized by a generic covariance matrix. The complete phase diagram of 
the model is obtained and it contains five different states separated by the 
collapse, glass, and folding "transitions." We analyze the thermodynamic limit 
for the high-density collapsed globule that permits a simplified analytical study. 
We argue that the approach may be applied in a variety of situations including 
biopolymers, gels, and other soft random materials. 
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1. I N T R O D U C T I O N  

Understanding of the conformational properties of polymeric systems 
possessing frustration due to the presence of a quenched disorder in 
monomer  interactions has been one of the significant challenges of statistical 
mechanics. The diversity of applications that are contingent on the resolu- 
tion of this fundamental problem is quite impressive, varying from random 
synthetic copolymers, randomly cross-linked polymer and neural networks 
and gels, to numerous biopolymers such as proteins, RNA and DNA. The 
analytical methods that have been traditionally used for studying such 
problems originated from the theory of spin glasses, and rely on the replica 
formalism. (~) However they have turned out to be rather difficult to apply 
to polymers, particularly if dynamical properties and kinetics of conforma- 
tional transitions are concerned. Such transitions may be accompanied by 
a change of not only the characteristic order parameters describing phase 
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separation, freezing and so on, but also of the fractal dimensions of the 
system both in the extrinsic space, in which it is embedded, and in the 
internal metric of the chain. Whilst excellent methods have been developed 
to deal with simple polymers, there are few that can be applied to more 
complex systems, and the method we propose here is quite rare in that it 
is capable of dealing also with kinetics and general non-equilibrium 
phenomena. This Gaussian selfconsistent approach, which resembles the 
time-dependent Hartree approximation, has the advantage of being 
straightforward, tractable and of general applicability to many problems. 
At equilibrium this method reduces to the Gibbs-Bogoliubov variational 
estimate with a quadratic trial Hamiltonian widely used in many different 
fields. For polymers the variational treatment was proposed by des 
Cloizeaux ~2) and Edwards t3) and later generalised in the works such as 
those of ref. 4. Unfortunately, it is known to yield an incorrect Flory expo- 
nent for good solvent conditions due to an improper probability distribu- 
tion at small distances. Nevertheless, this drawback of the Gaussian theory 
is currently well understood and may be resolved either fundamentally by 
improving the distribution function, tS) or ad hoc by enforcing a short-range 
cut-off. Despite this limitation even the original version of the method turns 
out to be quite adequate not only around the theta-point, but also in 
the dense globular state. Generalisations of the method to kinetics of 
homopolymer have been considered by US (6' 7) and others, ts) We have found 
that the scaling of the collapse time agrees with Monte Carlo simulations ~9) 
and with the phenomenological "sausage" model due to Gennes. t~~ 

Extension of this technique to copolymers, polymers whose interactions 
(hydrophobicity, stiffness, charge etc.) depend on the relative monomer 
positions along the chain, ~ )  can be achieved quite naturally. ~2) It would 
be important for many applications both in the area of synthetic and 
biological macromolecules. 

Many biomolecules are examples of copolymers with rather bizarre 
properties. For instance, the primary sequence of amino acids of a protein 
in the native state, which is the biologically active form of these molecules 
within living, cells, determines its unique conformation (tetriary struc- 
ture), tl3) An important reservation in trying to apply the methods of 
statistical mechanics to proteins is that protein sequences are very special 
since they have been carefully selected by the long biological evolution. 
As a preliminary, it is crucial to understand what are the factors that 
govern the conformational changes of arbitrary polypeptide sequences, and 
perhaps, prebiotic proteins. One can consider classes of polypeptides in the 
framework of the random copolymer model. The latter have been exten- 
sively studied using the replica formalism of the spin glass theory, t~4, 15) 
Kinetics of copolymer folding has been analyzed in numerous computer 
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simulations, (~6-2~ often stimulated by the interest coming from the protein 
research. A fundamental challenge that remains is to construct a unified 
analytical approach that could combine and relate the equilibrium and 
kinetic phenomena in random copolymers. 

In this paper we generalise the method proposed in ref. 21 for an 
Edwards-type model of random amphiphilic copolymer. We specify 
whether a monomer m is hydrophilic or hydrophobic by the variable 
Am = + 1 or - 1  respectively. Further approximations from this so-called 
binary disorder model are generally made, leading finally to a continuous 
distribution of disorder variables, Am. This could be a Gaussian distribu- 
tion with covariance matrix From,--A,,,A,,,,. The method presents a version 
of the Gaussian self-consistent approach for arbitrary heteropolymers t~2) 
with a disorder-dependent effective potential. It yields a set of self-consis- 
tent equations, which are further directly averaged over the quenched 
disorder in the lowest order of the dispersion keeping the "fully dressed" 
quantities and applying an enforced closure for the infinite chain of 
equations. 

In ref. 21 we have numerically solved the resulting self-consistent 
equations for a few examples of kinetics after a quench from the extended 
coil to globular states. Here we complete this analysis by elucidating the 
phase diagram of the model. The numerical procedure is currently applied 
only to rather short chains, so one would like to consider the thermo- 
dynamic limit, in which one would hope to obtain simpler equations 
amenable to analytical study. The thermodynamic limit serves as an 
important preliminary for understanding the most universal features of the 
system under consideration. 

2. THE M E T H O D  

For clarity we shall denote the monomer spatial positions by capital 
characters, Xm, and their Fourier transforms by the lowercase ones, Xq. 
The Fourier transformations for a ring polymer are defined as, 

N - - 1  1 N - - I  

Xm= Z f(m--q) Xq ' Xq=~ )-- ft, q)Xm, (11 
q = O  m----O 

f~)  _-- exp (2~Nm-), (2) 

where N is the degree of polymerization. In the absence of the 
hydrodynamic effect the exact Langevin equation for the sequence model of 
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a random copolymer may be written in terms of the Fourier modes as 
follows, 

d aH 
~ Xq(t) ~--" - - 0 T  "{" ~q( t ) '  (3)  

--q 

5~' 5(t t' (r/q(t) r/q:(t')) =2kBT(Oq+q, O - ), (4) 

where ( =  N(b and (b is the bare friction constant. The effective free energy 
functional, H=I~+Hai~, consists of the homopolymeric, /-7, and the 
disordered, Ha~ parts respectively, 

L--1 -- K 
O~-~" 2 Z ( X n + l  -- Xn)2 "+" E aL Z r I  6(Xmi-- Xmi+l), (5)  

n L>2 {m} i-- 1 

1 
Ha~,=~ ~ (Am, + Am2) 5(Xm,--Xm2). (6) 

m I m 2 

Here ~c is l~he spring constant, 5L are the virial coefficients of the excluded 
volume interactions and summation over {m} includes all values of indices 
ml,...,ml, with m~ :/:m~+~. Also A,,, are random variables that are inde- 
pendent on the half-period with the Gaussian distribution of disorder 
described by an arbitrary translationally invariant covariance matrix, 

A,,,Am,=Fm_m,. (7) 

Henceforth we use the brackets ( A )  to denote the statistical averages over 
the noise and initial ensemble of monomer positions { X(t = 0)} and the 
bar A to denote averages over the quenched distribution of disorder {A }. 
The Fourier transforms {2} are likewise independent random Gaussian 
variables with zero mean value and dispersion Fq, 

1 ~f~q) Fk. (8) 

For a constant covariance matrix of the disorder distribution we shall use 
the standard notation Fk = d 2. We believe that treatment of a sequence 
dependent matrix is important for modelling biopolymers and proteins in 
particular. 

For a given complexion of disorder Eq. (3) is exactly identical to the 
Langevin equations for arbitrary heteropolymer, with the two-body virial 
coefficients that are given by the formula, 

(2) __/g2 + �89 I +Am2). m I m 2 (9) 
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In our earlier work (12) we have shown that such a system could be success- 
fully studied in the framework of the Gaussian self-consistent method with 
a nondiagonal self-consistent potential. Since there are no a priori sym- 
metry properties along the chain, when we use the Fourier variables ( 1 ) the 
selfconsistent potential is non-diagonal and denoted by Vqp(t). Thus, we 
replace the exact Langevin Eq. (3) by a linear stochastic ensemble, 

d 
( ~ Xq---- - - 2  g q p (  {/],}, t) Xp "[- llq(/), (10) 

p 

where the potential Vqp is to be determined self-consistently from the exact 
equations. The potential has a homopolymeric diagonal part and a non- 
diagonal part describing the disorder that, according to Eq. (6), should be 
taken as a linear combination of the disorder variables, <2~) 

Vqp({2}, t ) -  Vq(t) 5qv+ Uqp(t) l~q_p. (11) 

Finally, having derived as many self-consistent equations as there are 
unknown functions, one has to average over the quenched disorder. This 
can be accomplished for the Gaussian disorder perturbatively by applica- 
tion of the Wick theorem, 

Z r._., OA. OA., n~ t {A} =0 
A({A}). (12) 

Let us introduce one of the observables of interest, 

~q(t) - Fq(t), Fq(t) = �89 IXq 12(t)), (13) 

which is the mean squared amplitude of q-th normal mode. The mean 
2= Fq. Multiplying squared radius of gyration is given simply by Rg ZqeO 

Eq. (3) by X_q(t) and performing evaluations of ref. 21 one can derive, 

d Fq(t)=k.r_l ( OH ) (14) 
X_q 0X_q ' 

where the latter average may be recovered by a differentiation of the mean 
energy with respect to a set of parameters { y}" 

an / O(H) 
X_q OX q = 07_ q (15) 
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Here we have used the notation, 

V t? (q) (P) Dram, = 1 Z ~]qtp"mm' Cmm'<XqX.> ' (16) 
qp 

(q) ~- f(m -q) f(m -q) (17) C mm, - -  , 

and we have introduced the auxiliary parameters yq, that are set equal to 
unity at the end of our calculations. Then the quantities (16) acquire a 
transparent meaning, 

1 
= dmm, Fq, Dmm,(~ q 1 ) ~-~ < (X m -- Xm,)2> = Z (q) 

q 
(18) 

(q) ( 2nq(m--m')) (19) 
dram, = 2 1 - cos N " 

Finally, the three-body correlations Din,.,,,,. are defined according to 

t?(q) C(mP)m,< XqXp>, (20) D m m , m , , - ~ Z ~ q l p . . m m  , 
qp 

and the higher order terms may be found in ref. 7. Note that for )tq = 1 
there are simple reduction relations, 

Dmm,m.(~lq = 1) - �89 < (Xm - X m ' ) ( X m "  - Xm')> ~--" Z d(q)mm'm" F q ,  (21) 
q 

(q) (q) d(qm).m , (q) dmm,m. ~. l ( d  mm' "Jr" - -  dmm.  ). ( 2 2 )  

We also introduce the disorder correlation functions, 

(/)qp( t)  =-- q~qp( t), $qp( t) = l A q _ p <  X_q(l) Xp(t) >, 

and the cumulants of monomer spatial correlations, 

(23) 

~mm' ~-- Dram', 

Dram, Dm,,m ,(c) =_~ Dram, Din,, m, - Dram, Dm,,m,. 

(24) 

(25) 

The quenched disorder averages can be performed using the Wick theorem 
(12) in the approximation in which we neglect contributions of order 
higher than ~ and combine the resulting terms into the "fully dressed" 
averages ~q and also apply the closure relations of the higher order 
disorder correlation functions <XqXp> ~s, "'" 2s k via rpqe. Carrying out the 
Fourier transformation and some simple algebra we can prove that the 
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cumulants (25) depend only on the differences of their indices: k~ = m -  m' 
and k2 = m" - m ,  

(c) 
Dmm, Dm.m, ~ Pklk 2, ~ m m '  ~ ~T~k" (26) 

The functions Pk~k2 may be expressed via quantities (23) as, 

Pk~, k2 = Z r'J -I pr p<s) (27) J t k  I k 2 
$ 

P~') = Z d(kP' P +~) (pp, p + ~, (28) 
p 

where the coefficients are 

d q, , )  = k(d q) + - (29) 

The cumulant of  the squared radius of gyration is related only to the 
fluctuations of the "composition," 20, 

2 2 ( c )  = ~ ' ~ -  1 RgRg . .  ~ ~lTqqq3pp, ~lTqq--" 2oFq, (30) 
q , p ~ O  

and it may be considered as a spin glass order parameter. (22) Another order 
parameter of interest, 

1 
= ~ ~ (Am q- A,,, - 22o) D,,,m: = E q~ qp ( 31 ) 

mm' q ~ p, q, p v~ O 

is actually related to the phase separation. Indeed, for just two types of 
monomers hydrophobic "A" (Aa = - A) and hydrophilic "B" (A s = A) 
with equal concentrations n a = n s--- 1/2 this reduces simply to 

~ =  A(R~(B) - R~(A))/2. (32) 

By averaging the self-consistent equations for (XqXp> we derive a 
system of two closed kinetic equations, 

~_d ~ q ( t ) = k B T -  V q ~ -  E Uqpq~qp, (33) 
2dt  

P 

d ~, 

f f~  qTqp(t) = - - ( g q +  gp)(pqp--l"q_pUqp(~q-[-~p). (34) 
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These are the fundamental equations of our theory. The effective potentials 
are to be found as derivatives, 

2 0 g  2 0 g  
Vq--3 0o~' Uq'-3 0qT~' (35) 

of the mean energy d ~ = ( H ) ,  

$' 3x ! 1 
~, + a: E + a~ E ~ =  T Yo(k k2) 3/2 k k l k  2 1 

3 [ ~k Pk, k 

8 k ~ Y2(kl' k2) _3 k~ Yo(kl, kl)5/2'Y3(kl' k2) 
"~" ~l 3 Yo(kl , k2) 7/2 - u3 - ~ (36) 

2 2 

where ftL--(27t)--3(L--1)/Eu L and t - (27t)  -3/2. Here we have used the 
following set of definitions, 

Yo(kl, k2)= Nk, Nk2-- N2,k2, (37) 

Y2(kl k2) = ~2 Pk2, + ..,@2 Pk,. + 4 ~ ,  k i k2 k 2 kl k 2 P k l k 2  , k l k  2 

"!" 2~f~k, ~f~k2Pk,. k2 -- 4~k, k2( ~k2Pk,. ktk2 (38) 

Y3(kl, k2) = Pk,.k2-- Pk, k2. k, k2, (39) 

~k = E d(q" p) ~qp, (40) 
qp 

with ,4(q,p) expressed via d~ q'p) by Eq. (22). 
W'k  I k 2 

The equilibrium free energy d [  Vq, Uqp]--~- T ~  can be obtained 
by disorder averaging its ).-dependent Gibbs-Bogoliubov estimate. (21) 
Alternatively, it is easy to see that the entropy 6" = Z;~=o ~ can be found 
by resolving the recurrence relation 

0~+1 
Oq~qp r ,_ , (~ + g) \ ~  + g~,:' (41) 

starting from the homopolymer entropy 5eo=(3ks/2)Y' .q~olog~q,  and 
satisfying the integrability condition, 

p qP 

- 0 ,  i >  1. (42) 
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In the lowest order this reproduces the formula, 

3 2 
5e _ 3 ~ log ~q _ ~ ~,, ~q~qqe ~ + O(T~2), (43) 
ks 2 q ~ O  q, 0 --P 

earlier obtained in ref. 21 in the Gibbs-Bogoliubov scheme. The equations 
of motion (33, 34) now may be rewritten up to terms of order p2 via the 
gradients of the free energy, 

( d ~ q ( t ) =  2 (  ~Od 00___~~ ) 
2dt - - -3  ~qu,yyq -['Eq~qp 

(44) 
p 

_(d 2 (  (0~q 0 ~ )  0 -~ ) "  (45, 2 dt q~qp(t)= --~ q~qp + + pq_p(~q + ~ )  Od 

We have made a preliminary study of the kinetic behaviour implied by 
these equations in ref. 21. However, we may note that these equations 
possess another interesting application. That is, when the time derivatives 
are set to zero we find equilibrium solutions for quenched disorder, but 
without having to apply the replica trick. This represents at least an 
interesting alternative to the replica approach. 

3. PHASE D I A G R A M  

In Fig. 1 we present the "phase diagram" of the system for a constant 
disorder covariance matrix. However, let us note carefully that there is at 
present no guarantee that these are in any sense genuine macroscopic 
phases, or the boundaries between them are genuine phase transitions. 
Nevertheless, the various order parameters of the theory undergo rapid 
transitions from one state to another, and where discontinuous transitions 
are involved we can locate distinct minima in the free energy corresponding 
to them. The region (I) of positive ~2 and comparatively small dispersions 
of disorder A corresponds to the extended Flory coil state akin to the 
analogous homopolymer state. Decreasing a2 leads to globular states via a 
continuous collapse transition. There are three different globular states. 
Phase (II) describes the liquid-like globule analogous to the homopolymer 
one. Phase (IV) is the "glassy" phase characterised by large values of the 

2 2(c) Phase (V) corresponds to the "folded" spin glass order parameter RgRg . 
2 2(c) globule characterised by smaller values of RgRg and larger values of the 

phase separation order parameter ~. The glass transition is first-order-like 
for sufficiently negative ~2 and it becomes continuous after the tricritical 
point. Note that, above the collapse transition curve, the continuation of 

822/89/1-2-24 
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the glass transition separates the Flory coil (I) from phase (III). One can 
2 decreases somewhat, whilst see that on passing from the Flory coil to it Rg 
2 2~ increases significantly. the degree of "glassiness" as exhibited by RgRg 

However, it is only on passing across the collapse curve that the coil really 
condenses. Therefore we believe that phase (III) is composed of relatively 
open coils with numerous loops formed by attractive sites. However at 
present we have not studied any order parameter that would establish this 
conjecture, although we have observed this behaviour in related Monte 
Carlo simulation. r 

The "folding" transition is first order-like in the whole region. By 
"spinodal" curves here we understand the curves separating regions of dis- 
tinct final states of kinetics. Thus, these also are manifested in a slowing- 
down of kinetics on approaching them from an adjacent phase. Unlike the 
case for the homopolymer ~23) the kinetic Eqs. (33), (34)do not represent 
motion against the free energy gradients in the space of averaged dynami- 
cal variables ~q, ~Oqp. Therefore, the "spinodal" lines here are by no means 
special points of the Hessian matrix of the free energy. It is worthwhile 
placing emphasis that there is a pronounced region in the lower part of the 
diagram between the "folding" transition curve and its "spinodal" depicted 

1 
u2 

-10 

-20 

-30 

-40 

-50 

i , ... 

(II) ~ (I 

10 20 30 40 50 60 

A �9 

Fig. 1. The phase diagram of the model in terms of the second virial coefficient, /'12, and the 
dispersion of disorder, A, obtained from the complete self-consistent Eqs. (33), (34). Solid 
lines represent first order-like transitions, dashed lines--continuous transitions, and dotted 
lines--"spinodar' curves. The Roman numerals correspond consequently to: Flory coil, liquid- 
like globule, random coil, "glassy" phase and folded globule. Continuous transition__curves are 
determined by the points of the fastest change of respective order parameters (R 2 for the 
collapse transition and RgRg2 2to) for the glass transition). Here N =  30, x =  1 and a3 = 10. 
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in Fig. 1. On quenching across the boundary between phases (IV) and (V) 
to the region where (IV) is still metastable the system will be trapped for 
a long time in this metastable glassy state. 2 

Finally, let us discuss the problems of the current version of the 
Eqs. (33), (34). The exact determination of the transition curves of first 
order-like transitions requires comparison of the free energy of all local 
minima and location of the global one. One of the problems is that the 
entropy (43), and consequently the free energy, corresponds to the kinetic 
Eqs. (33), (34) only up to p2. Since for the glass transition the difference of 
the "approximate" free energy in phases (II) and (IV) appears to be of 
order p2, its exact location cannot be reliably established in the present 
approximation. This deficiency, however, is absent for the "folding" trans- 
ition, where the free energy differs between phases (IV) and (V) by order 
of F, what is well within the grasp of the approximation. For this reason 
our predictions are less accurate for the "glass" transition and its 
"spinodals." The "spinodal" curves in principle should be unaffected by 
this, as they are determined by the kinetic equations themselves (33), (34). 
They might though be shifted by higher order corrections in the internal 
energy 8. Another limitation here is that we did not account for/'/4 and the 
higher virial coefficients that should be included for high A and -if2 to 
prevent instability caused by strong two-body attraction. 

4. T H E R M O D Y N A M I C  LIMIT FOR DENSE GLOBULE 

In this section we analyse the limit of high density globule (i.e., our 
further considerations are valid only in the region ~2 < 0), so that p2/3~ 
(1/~2[/t]3)2/3 ~ x, and hence one may neglect the spring term. To be precise 
we would like to investigate the following thermodynamic limit: N ~  oo 
and x ~ 0 in the complete set of Eqs. (33), (34). We start by noting that for 
a homopolymer in this limit the equations possess only a constant solution 
~q=~=const ,  and ~,,,-D=2N~.~=(4/3)(2a3N/ia21) 2/3 for conforma- 
tional modes q, m~0 .  For a random copolymer we shall seek an 
analogous constant solution by requiring in addition that ~lgqp-~ (~--" const. 
The latter solution though does not have the status of the exact solution 
because the diagonal and nondiagonal elements of this matrix require 
separate considerations. Nevertheless, for large N the contribution of 
the diagonal elements becomes negligible compared to the that of the 

2 In certain applications, such as the protein folding problem, one is interested in disorder 
distributions possessing better kinetic accessibility of the "folded" state. To improve it, 
Fq should be optimised so that the "folding" transition and the "spinodal" are shifted 
towards smaller A and closer to each other thereby minimising the barrier height. 



358 T imoshenko  et  al. 

nondiagonal ones as may be seen from the exact numerical solution. There- 
fore one may still use the above Ansatz in the thermodynamic limit. 

It is instructive to appeal first to the solution of the exact Eqs. (33), 
(34) for sufficiently small x. In Fig. 2 we draw the behaviour of the quan- 

--2/3 2 tity r 2 ~ - 2 N  Rg v e r s u s  the dispersion of disorder. In total there are three 
branches of solutions: (II) corresponding to the liquid-like globule, (IV) 
corresponding to the "glassy" phase and (V)--to the "folded" globule. 
Analysis of the spatial correlations ~,, presented in Fig. 8 in ref. 21 shows 
that this function is most convex in phase (IV), remaining non-constant 
even in the limit x ~ 0, as opposed to solutions (II) and (V). This allows 
one to expect that the constant Ansatz may not describe this "glassy" phase 
(IV). Evidently, as the spring constant vanishes no information remains 
about positions along the chain. We comment that phase (IV) has been 
interpreted by us in ref. 21 as existing due to the frustration on short dis- 
tances along the chain after formation of locally phase separated clusters 
comprised by neighbouring monomers in the chain. Such an interpretation 
is indeed supported by the behaviour of the internal modes and order 
parameters. It seems natural that positions along the chain do matter for 
the "glassy" phase (IV). On the other hand, it is also important for this 
phase to distinguish the diagonal and non-diagonal elements of cp because 

F 
r 2 

0.4 

0.35 

0.3 

0.25 

0.2 

0.15 

0.1 

0.05 

(IV) 

! 
i 

i 

. . . .  i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i 

(II) (V) 

o ' 2'0 ' 4'0 0 10 30 50 
A 

Fig. 2. Behaviour of the quantity r 2= 2N-2/aR 2 vs A determined from the complete self- 
consistent Eqs. (33), (34). Solid lines correspond to the values of r 2 in the global minimum 
of the free energy (denoted by the same numbers as in Fig. 1 ), dashed linesmin metastable 
minima; vertical dotted lines correspond to the points of discontinuous transitions and 
quadrangles--to the "spinodal" points. Here N =  31, x=0.1,  t 22=-40  and t73= 10. 
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the former characterise the "glass" phase (21) and the latter describe the 
degree of phase separation, ~, according to Eq. (31). 

Thus, given the limitations of the current procedure, let us study its 
consequences and compare the results here with those for the complete set 
of equations. It is natural to introduce the rescaled variables, 

D N2q~ 
r2 ----" N2/---3' Z - AD" (46) 

The first definition obviously reflects the scaling of the compacted globule 
size on the polymer length N. The second variable could be also under- 
stood as the dimensionless degree of the phase separation. Indeed, from the 
definition ~ =  N2~p and in the case of the binary distribution and equal 
concentration using Eq. (32), we obtain 

1 R2(B)-R2(A) 
(47) 

and, evidently, this is bound by the conditions 

0 ~<2'< 1/2. (48) 

Let us write out the specific energy, entropy and free energy 

8 6 a d 
e = ~ ,  s = ~ ,  a = ~ ,  (49) 

as well as the mobility per monomer and the characteristic time-scale 

t 
(b = ~ ,  "C --  N2/3.  (50) 

Then, the specific energy and entropy reduce to the following expressions, 

--6-~4 ~ 3/2 9X2 e = r-3(~2(1 + ~X2) _ 3 dX) 4- r (~) ~3(1 + ), (51) 

s =  3ks(4 log r + log(1 - 4Z2)). (52) 

Note that this entropy is exact in the sense that it can be derived by the 
summation in all orders of the recurrence relations (41), (42). 
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The kinetic equations following from Eqs. (33), (34) take form, 

(b dr kBT 13e 13a 
2 dr r 3 3r 3 3r (53) 

2 d r -  -~ 2ksT+ 3Z = -  3r2 ~ZZ' 

and they turn out to be N-independent. It is encouraging that the time 
derivative of the free energy is non-positive due to the bound (48) and the 
relation, 

da 2 ( ( a a )  2 1-az2(aah2h 
Yrr + r L a x , / j  (55) 

By setting the time derivatives to zero in Eqs. (53), (54) we obtain the 
equilibrium equations. The resulting phase diagram is presented in Fig. 3. 
Here (A) and (B) correspond respectively to the regions of unique and 
stable liquid-like globule (II) in Fig. 1; (C) and (D) correspond to the 
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1 
u2 -2o 

-30 
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-50 

-60 

-70 
0 4.5 
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(B) (D) ........................... 

............. "":,. ............... ' , .................................. i ....................................... i ........... 
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Fig. 3. The phase diagram of the model in terms of the second virial coefficient, /'12, and the 
dispersion of disorder, d, obtained from the reduced self-consistent Eqs. (53), (54). Solid lines 
represent first order-like transitions, dashed lines--continuous transitions, and dotted 
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unique frozen globule state, and coexistence of a stable frozen globule and a metastable liquid- 
like globule. Here and below if3- 10. 
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regions of unique and stable "folded" globule (V) in Fig. 1. In this limit 
increasing the dispersion of disorder causes a transition from the liquid-like 
globule directly to the "folded" phase (without entering the "glassy" phase 
(IV)). The "folded" phase, as we know, is characterized by a non-zero 
"glass" order parameter and large phase separation parameter. In this 
context the transition between (B) and (D) we shall call the "freezing" 
transition and the phase (D) "frozen" in agreement with the standard 
terminology. Really, only this transition occurs in the so-called constant 
density approximation widely used in the literature, t~4, 15) which in some 
sense is analogous to our constant Ansatz. Our foregoing more general 
treatment elucidates the limitations of such an approximation in that it 
looses the intermediate "glassy" phase (IV). 

Similar to Fig. 1 we have a continuous transition above the tricritical 
point and first order-like transition for higher two-body attraction. Thanks 
to the availability of a valid entropy, we now can clearly identify the 
transition line and both "spinodals." Still, for too large la21 one needs to 
account for the four-body and higher order excluded volume interactions. 
The left spinodal appears to be rather sensitive to these terms and we will 
not attempt to obtain the concrete laws for it. As to the second spinodal 
it can be easily calculated in the simple asymptotic regime of small 
ka T/lu2 I. In this case the extremum conditions yield the equations, 

4 8 z~ 
Z3--~Z -t-4-- ~ id2----[ = 0, (56) 

r_ 3 = lazl (1 + ~-Z 2) + 3 ,~Z (57) 
2(4~3/2 a3 (1 + 9X2 ) " SJ 

By setting the discriminant of the cubic equation to zero we obtain the law 
for the fight spinodal in Fig. 3, 

2 
z~- la21 ~ 0.057 la21, (58) 

and this estimate becomes very accurate away from the tricritical point. 
As one can see from Fig. 4 the "freezing" transition here describes 

the transformation of a homogeneous liquid-like mixture of species to the 
phase separated and considerably frozen state. Freezing is ma,ifested in 
the sharp decrease of the entropy, s, during the transition. The size, r, of 
the globule undergoes an abrupt significant growth at the "freezing" trans- 
ition and then slowly decreases with A. 
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Finally, in Fig. 5 we draw the time evolution of the same quantities in 
kinetics after an instantaneous quench from A =0  (liquid-like globule) to 
the "frozen" phase in the vicinity of the right spinodal line. This kinetics 
possesses a characteristic slowing down on approaching the spinodal from 
the right. Numerically we find that the timescale of slowing-down diverges 
as, 

T s p i n ~  1~12 ~ s p i n o d  - -  1 / 2  ~ - u 2  I �9 (59) 

5. CONCLUSION AND DISCUSSIONS 

In this paper we have generalized the Gaussian self-consistent method 
for random copolymers of ref. 21 to a Gaussian disorder with arbitrary 
translationally invariant covariance matrix and obtained the phase diagram 
of the model in the simplest case of constant disorder covariance matrix. 
The method permitted us to describe qualitatively both the extended coil 
(Flory and "random") and the compacted globular conventional (liquid- 
globule-like) and disordered ("glassy" and "folded") phases. 

Now, using a simplified Ansatz for the high density globule in the 
thermodynamic limit we have managed to obtain some analytical predic- 
tions and to clarify the fundamental issue about the relationship between 
the kinetic equations and the equilibrium free energy in this method. The 
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validity and meaning of such a simplified treatment has been subjected to 
scrutiny by comparing it to the numerical solution of the complete set of 
equations. The conclusions are mixed. On one hand, the Ansatz may be 
viewed as an adequate asymptotic solution for two of the globular phases. 
On the other hand, it cannot describe the "glassy" intermediary, for which 
a more general treatment is desirable. Yet, the Ansatz allows one to resolve 
a difficult question regarding the thermodynamic stability of the "folded" 
("frozen") phase and it gives a qualitatively correct description of the 
"freezing" transition. In some sense our analysis indicates that one should 
bear in mind certain reservations while trying to apply the widely used 
constant density. The enforcement of such an idealization results really in 
a picture of freezing of a homogeneous liquid droplet rather than of a 
compacted polymer chain, and hence has a limited relevance to the original 
problem. 

To reliably obtain the analytical laws for all of the transition lines and 
kinetics of corresponding conformational transformations we will still have 
to overcome the weakest point of the method. Namely, it is important to 
calculate higher orders in the weak disorder expansion for the energy and 
entropy. This seems feasible, at least, in the reduced form of the theory 
using the constant Ansatz. In this case, we hopefully should be able to con- 
struct a proper Flory-type theory for copolymers with quenched disorder. 
In any case, we have currently progressed to a higher level of understanding 
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of the approach and can see its advantages and limitations. Although the 
primary focus of this paper was methodological, we believe that this work 
may have a number of practical ramifications for synthetic copolymers and 
complex biopolymers, such as proteins. If one is to proceed further in the 
latter direction, however, it will be necessary to focus on more realistic dis- 
order distributions relevant to proteins. In addition we have argued that 
one can fit the frustrated coil with loop structure into the picture, another 
interesting advance. 

Finally, we now wish to point out that our whole approach can be 
readily generalised to the study of randomly substituted (chemically 
modified) cross-linked networks. This is important because this has become 
of very great interest recent ly .  ~24'25) we  believe that many of the states in 
our study have analogues in networks, and that the application of our 
approach would be of considerable interest in that field. 
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